Planetary surface dating from crater size-frequency distribution measurements: spatial randomness and clustering

Greg Michael, Thomas Platz, Thomas Kneissl, Nico Schmededmann
Planetary Sciences and Remote Sensing
Department of Earth Sciences
Freie Universitaet Berlin
To draw conclusions about the impactor population – or about the age of a surface unit – using a crater count, you have to be certain that the crater population corresponds to an exposure to the impact flux in a known way.

In an ideal scenario, each impact produces a single crater, which is retained by the surface until the time of observation. This process produces a random spatial configuration of the craters.

Real surfaces are rarely so well behaved. One must be selective in choosing counting areas which are geologically homogeneous: not only in their formation, but also in their modification history. The quality of the conclusions depends strongly on making an adequate choice of area.

A randomness analysis can be used to verify the homogeneity of a measured population, and conversely to reject counts which are spatially non-random.
Ingredients of a crater age measurement

- Known size-frequency distribution of impacting bodies
- Some estimate of the variation of the impact rate as far back as the oldest observable surfaces
 (a similar system can be devised for a two-population model)

- Impact craters form independently of each other
 - be cautious of secondaries, fragmented impactors

- Accumulating surface retains its crater population
 - Or, more weakly, has a spatially uniform resurfacing history

Violation of either condition yields a non-random population.
What does a non-random population look like?

- Clustered sub-unit near Elysium Mons, Mars
- Two obviously clustered regions, which normally would be excluded from a crater count for dating
- Possible to recognise this clustering with a visual inspection, but more objectively, how can we measure the degree of clustering?
How to measure spatial randomness?

• Split population into bins by diameter – wish to examine clustering only between comparably-sized craters. We use root-2 bin spacing

• Select measure sensitive to clustering; two shown here:
 • Mean 2nd-closest neighbour distance (M2CND)
 • Standard deviation of adjacent area (SDAA)
How to measure spatial randomness?

- Split population into bins by diameter – wish to examine clustering only between comparably-sized craters. We use root-2 bin spacing.

- Select measure sensitive to clustering; two shown here:
 - Mean 2nd-closest neighbour distance (M2CND)
 - Standard deviation of adjacent area (SDAA)

- Compare clustering measure to histogram for series of random configurations of same population.

- Assess degree of clustering: SDs above/below mean.
Influence of boundary

- The range of possible values for a clustering measure for random configurations is sensitive to the shape of the counting area boundary.

- In this extreme example – a disjoint counting area – we see a trimodal variation of the mean closest neighbour distance measure.

- In general, differently shaped areas will show different ranges for the expected variation of the clustering measure (e.g. a circular crater floor vs. an elongated lava flow of equivalent area).

- This is the reason to use a numerical approach to the problem.
Example site: Pickering crater, Mars

- 80 km lava-flooded crater with a younger flow entering from NW
- Boundary is unambiguous
- Expect unit and its underlying basement to have well-defined ages
- No obvious modification: expect a ‘clean’ crater count here
- Some larger craters protrude through the flow from the underlying surface (Platz et al. 2010)
Pickering crater: randomness analysis

- Apparent clustering in smallest 88 m bin - measurement effect, cf. resolution fall-off

- ‘Well-behaved’ populations in 120, 180 and 250 m bins

- More separated than random populations in 350, 500 and 710 m bins

- ‘Well-behaved’ again in 2 km bin (1 and 1.4 km bins empty)
Pickering crater: non-random diameter range

- More separated than random populations in 350, 500 and 710 m bins. *Why?*

- Many of the craters located close to unit boundary

- Not obvious from visual inspection

- Likely relates to lesser flow thickness near the boundary: some of these craters belong to the underlying unit

- Exclude these bins from diameter range used to determine age, since this population is non-random
What is random?

- From a random scattering, any configuration is possible, but some are less likely than others.

- What is deemed likely or unlikely is determined by the clustering measure.

- Roughly 2 of 100 random configurations will lie beyond the 2σ boundary; 1 in 1000 beyond 3σ.

- It’s always possible to construct special configurations which any one measure will not identify.
 - e.g. equidistant points around the edge of a circular unit would defeat the SDAA measure.

- Judgement should be a combination of the analysis result and an examination of the configuration for possible geological influences.
Conclusions

- A randomness analysis provides a deeper understanding of the spatial structure of a measured crater population
- Deviations in randomness measures can highlight the influence of geological modifications of the crater population
- Presentation of a randomness analysis can help others make an objective assessment of the quality of an age measurement
- The technique is of particular relevance to the study of early solar system impactor populations

Randomness analysis software

- Runs in IDL virtual machine, as Craterstats
 - Start from Craterstats utilities menu, or by double-clicking randomness_analysis.sav

- Select an .scc crater-count file produced by CraterTools
 - this file contains the crater locations and the unit boundary polygon as well as the diameters
 - can select more than one file with ctrl-clicks

- Program settings can be changed by editing randomness_analysis/settings.txt inside the craterstats folder
 - clustering measure
 - iterations
 - starting path for file-open operations

Planetary surface dating from crater statistics – PGM Meeting, USGS Flagstaff, 19 June 2012
Randomness analysis software

- Results are placed in a sub-folder where the .scc file resides
 - composite results figure
 - crater map
 - n_sigma plot

- Additionally, a text file containing a table of the n_sigma values is placed together with the .scc file
 - used by Craterstats to recreate the n_sigma plot
Randomness analysis software - task

• Modify the file randomness_analysis/settings.txt to use the m2cnd clustering measure

• Start craterstats, and then the randomness analysis utility

• Select the crater-count sample/Pickering.scc

• Wait for the analysis to finish, then examine the results

• Create a crater-count plot in craterstats, displaying the n_sigma diagram

• Create two fits for the basement age and the resurfacing age using appropriate diameter ranges, taking account of the randomness analysis results